Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.422
Filtrar
1.
Mol Biol Cell ; 35(5): ar66, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38536445

RESUMO

The maintenance of epithelial barrier function involves cellular tension, with cells pulling on their neighbors to maintain epithelial integrity. Wounding interrupts cellular tension, which may serve as an early signal to initiate epithelial repair. To characterize how wounds alter cellular tension we used a laser-recoil assay to map cortical tension around wounds in the epithelial monolayer of the Drosophila pupal notum. Within a minute of wounding, there was widespread loss of cortical tension along both radial and tangential directions. This tension loss was similar to levels observed with Rok inactivation. Tension was subsequently restored around the wound, first in distal cells and then in proximal cells, reaching the wound margin ∼10 min after wounding. Restoring tension required the GPCR Mthl10 and the IP3 receptor, indicating the importance of this calcium signaling pathway known to be activated by cellular damage. Tension restoration correlated with an inward-moving contractile wave that has been previously reported; however, the contractile wave itself was not affected by Mthl10 knockdown. These results indicate that cells may transiently increase tension and contract in the absence of Mthl10 signaling, but that pathway is critical for fully resetting baseline epithelial tension after it is disrupted by wounding.


Assuntos
Células Epiteliais , Cicatrização , Animais , Cicatrização/fisiologia , Células Epiteliais/fisiologia , Receptores Acoplados a Proteínas G , Transdução de Sinais , Drosophila
2.
Elife ; 132024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441552

RESUMO

The mammary gland is a unique organ that undergoes dynamic alterations throughout a female's reproductive life, making it an ideal model for developmental, stem cell and cancer biology research. Mammary gland development begins in utero and proceeds via a quiescent bud stage before the initial outgrowth and subsequent branching morphogenesis. How mammary epithelial cells transit from quiescence to an actively proliferating and branching tissue during embryogenesis and, importantly, how the branch pattern is determined remain largely unknown. Here, we provide evidence indicating that epithelial cell proliferation and onset of branching are independent processes, yet partially coordinated by the Eda signaling pathway. Through heterotypic and heterochronic epithelial-mesenchymal recombination experiments between mouse mammary and salivary gland tissues and ex vivo live imaging, we demonstrate that unlike previously concluded, the mode of branching is an intrinsic property of the mammary epithelium whereas the pace of growth and the density of ductal tree are determined by the mesenchyme. Transcriptomic profiling and ex vivo and in vivo functional studies in mice disclose that mesenchymal Wnt/ß-catenin signaling, and in particular IGF-1 downstream of it critically regulate mammary gland growth. These results underscore the general need to carefully deconstruct the different developmental processes producing branched organs.


Assuntos
Células Epiteliais , Via de Sinalização Wnt , Camundongos , Animais , Epitélio/metabolismo , Células Epiteliais/fisiologia , Proliferação de Células , Morfogênese , Mesoderma , Glândulas Mamárias Animais/metabolismo
3.
Eur J Cell Biol ; 103(1): 151381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183814

RESUMO

The facultative intracellular pathogen Shigella flexneri invades non-phagocytic epithelial gut cells. Through a syringe-like apparatus called type 3 secretion system, it injects effector proteins into the host cell triggering actin rearrangements leading to its uptake within a tight vacuole, termed the bacterial-containing vacuole (BCV). Simultaneously, Shigella induces the formation of large vesicles around the entry site, which we refer to as infection-associated macropinosomes (IAMs). After entry, Shigella ruptures the BCV and escapes into the host cytosol by disassembling the BCV remnants. Previously, IAM formation has been shown to be required for efficient BCV escape, but the molecular events associated with BCV disassembly have remained unclear. To identify host components required for BCV disassembly, we performed a microscopy-based screen to monitor the recruitment of BAR domain-containing proteins, which are a family of host proteins involved in membrane shaping and sensing (e.g. endocytosis and recycling) during Shigella epithelial cell invasion. We identified endosomal recycling BAR protein Sorting Nexin-8 (SNX8) localized to IAMs in a PI(3)P-dependent manner before BCV disassembly. At least two distinct IAM subpopulations around the BCV were found, either being recycled back to cellular compartments such as the plasma membrane or transitioning to become RAB11A positive "contact-IAMs" involved in promoting BCV rupture. The IAM subpopulation duality was marked by the exclusive recruitment of either SNX8 or RAB11A. Hindering PI(3)P production at the IAMs led to an inhibition of SNX8 recruitment at these compartments and delayed both, the step of BCV rupture time and successful BCV disassembly. Finally, siRNA depletion of SNX8 accelerated BCV rupture and unpeeling of BCV remnants, indicating that SNX8 is involved in controlling the timing of the cytosolic release. Overall, our work sheds light on how Shigella establishes its intracellular niche through the subversion of a specific set of IAMs.


Assuntos
Fosfatos de Fosfatidilinositol , Shigella , Humanos , Shigella/fisiologia , Vacúolos/metabolismo , Células Epiteliais/fisiologia , Shigella flexneri/genética , Células HeLa , Nexinas de Classificação/metabolismo
4.
Nat Commun ; 14(1): 8056, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052799

RESUMO

Shear stress generated by urinary fluid flow is an important regulator of renal function. Its dysregulation is observed in various chronic and acute kidney diseases. Previously, we demonstrated that primary cilium-dependent autophagy allows kidney epithelial cells to adapt their metabolism in response to fluid flow. Here, we show that nuclear YAP/TAZ negatively regulates autophagy flux in kidney epithelial cells subjected to fluid flow. This crosstalk is supported by a primary cilium-dependent activation of AMPK and SIRT1, independently of the Hippo pathway. We confirm the relevance of the YAP/TAZ-autophagy molecular dialog in vivo using a zebrafish model of kidney development and a unilateral ureteral obstruction mouse model. In addition, an in vitro assay simulating pathological accelerated flow observed at early stages of chronic kidney disease (CKD) activates YAP, leading to a primary cilium-dependent inhibition of autophagic flux. We confirm this YAP/autophagy relationship in renal biopsies from patients suffering from diabetic kidney disease (DKD), the leading cause of CKD. Our findings demonstrate the importance of YAP/TAZ and autophagy in the translation of fluid flow into cellular and physiological responses. Dysregulation of this pathway is associated with the early onset of CKD.


Assuntos
Insuficiência Renal Crônica , Sirtuína 1 , Animais , Camundongos , Humanos , Sirtuína 1/genética , Proteínas Quinases Ativadas por AMP , Peixe-Zebra , Autofagia/fisiologia , Insuficiência Renal Crônica/genética , Células Epiteliais/fisiologia , Rim
5.
Nat Commun ; 14(1): 7619, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993434

RESUMO

The biological process of aging is thought to result in part from accumulation of senescent cells in organs. However, the present study identified a subset of fibroblasts and smooth muscle cells which are the major constituents of organ stroma neither proliferative nor senescent in tissues of the elderly, which we termed "mid-old status" cells. Upregulation of pro-inflammatory genes (IL1B and SAA1) and downregulation of anti-inflammatory genes (SLIT2 and CXCL12) were detected in mid-old cells. In the stroma, SAA1 promotes development of the inflammatory microenvironment via upregulation of MMP9, which decreases the stability of epithelial cells present on the basement membrane, decreasing epithelial cell function. Remarkably, the microenvironmental change and the functional decline of mid-old cells could be reversed by a young cell-originated protein, SLIT2. Our data identify functional reversion of mid-old cells as a potential method to prevent or ameliorate aspects of aging-related tissue dysfunction.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Idoso , Senescência Celular/genética , Envelhecimento/genética , Células Epiteliais/fisiologia , Fibroblastos , Miócitos de Músculo Liso
6.
Dev Cell ; 58(23): 2641-2651.e6, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37890489

RESUMO

Choroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.


Assuntos
Axonema , Cílios , Humanos , Camundongos , Animais , Cílios/fisiologia , Células Epiteliais/fisiologia , Epitélio , Corioide , Mamíferos
7.
Elife ; 122023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548995

RESUMO

Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell-cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell-cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern ('cell doublet'). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell-matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.


Assuntos
Células Epiteliais , Fenômenos Mecânicos , Células Epiteliais/fisiologia , Epitélio , Adesão Celular/fisiologia , Elasticidade , Estresse Mecânico
8.
Theriogenology ; 210: 101-109, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490795

RESUMO

LIF is crucial in regulating embryo implantation, while HOXA10 is a marker gene for uterine receptivity. However, the specific mechanism of LIF regulating HOXA10 during cow embryo implantation has not been fully understood. To address this knowledge gap, the experiment involved treating bovine endometrial epithelial cells (BEECs) with LIF to investigate the relationship between LIF, miRNA, and HOXA10. The experimental findings revealed that applying LIF resulted in a substantial increase in the proliferation of endometrial epithelial cells. Moreover, the expressions of PI3K, AKT, HOXA10, CDK4, cyclinD1, and cyclinE1 were significantly elevated. Conversely, the expression of p21Cipl was significantly reduced. In the group that received a combination of LIF and a STAT3 inhibitor, the expression of PI3K/AKT remained significantly increased, but there was no significant change in the expression of HOXA10. When miRNA-27a-3p was overexpressed, it resulted in a decrease in both the RNA and protein expression of HOXA10. Conversely, inhibiting miRNA-27a-3p increased the RNA and protein expression of HOXA10. In the presence of LIF treatment, the expression of miRNA-27a-3p was reduced, while the expression of HOXA10 was increased. However, when LIF and a STAT3 inhibitor were combined, there was no significant change in the expression of miRNA-27a-3p or HOXA10. Consequently, LIF facilitated cell proliferation by activating the PI3K/AKT pathway. LIF controlled the expression of miRNA-27a-3p and HOXA10 in endometrial epithelial cells through STAT3, with miRNA-27a-3p negatively regulating the expression of HOXA10.


Assuntos
MicroRNAs , Fosfatidilinositol 3-Quinases , Feminino , Bovinos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Endométrio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/fisiologia
9.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37351870

RESUMO

Primary bovine intestinal epithelial cells (PBIECs) are an important model for studying the molecular and pathogenic mechanisms of diseases affecting the bovine intestine. It is difficult to obtain and grow PBIECs stably, and their short lifespan greatly limits their application. Therefore, the purpose of this study was to create a cell line for exploring the mechanisms of pathogen infection in bovine intestinal epithelial cells in vitro. We isolated and cultured PBIECs and established an immortalized BIEC line by transfecting PBIECs with the pCI-neo-hTERT (human telomerase reverse transcriptase) recombinant plasmid. The immortalized cell line (BIECs-21) retained structure and function similar to that of the PBIECs. The marker proteins characteristic of epithelial cells, cytokeratin 18, occludin, zonula occludens protein 1 (ZO-1), E-cadherin and enterokinase, were all positive in the immortalized cell line, and the cell structure, growth rate, karyotype, serum dependence and contact inhibition were normal. The hTERT gene was successfully transferred into BIECs-21 where it remained stable and was highly expressed. The transport of short-chain fatty acids and glucose uptake by the BIECs-21 was consistent with PBIECs, and we showed that they could be infected with the intestinal parasite, Neospora caninum. The immortalized BIECs-21, which have exceeded 80 passages, were structurally and functionally similar to the primary BIECs and thus provide a valuable research tool for investigating the mechanism of pathogen infection of the bovine intestinal epithelium in vitro.


In dairy cattle, the intestine is essential for productivity as it contributes nearly 10% of the total metabolizable energy. The intestinal epithelium is at risk of infection from constant exposure to pathogenic microorganisms, which seriously endangers an animal's health, but no bovine intestinal epithelial cell line has been developed so far for research on intestine -related diseases. Thus, the goal of this study was to create an immortalized cell line from isolated primary bovine intestinal epithelial cells. The expression of an exogenous human telomerase reverse transcriptase (hTERT) gene can circumvent the Hayflick limit by maintaining telomere integrity and we used transfection with a plasmid expressing the hTERT gene to convert primary intestinal epithelial cells into an immortalized cell line, which we then characterized. The results showed that the immortalized cell line (BIECs-21) was structurally and functionally similar to the primary bovine intestinal epithelial cells (BIECs) and thus provided a valuable research tool for investigating the mechanism of pathogen infection of the bovine intestinal epithelium in vitro.


Assuntos
Células Epiteliais , Intestinos , Animais , Bovinos , Humanos , Proliferação de Células , Linhagem Celular , Células Cultivadas , Células Epiteliais/fisiologia
10.
Kidney Int ; 104(1): 33-35, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349059

RESUMO

The role of parietal epithelial cells (PECs) in kidney function and disease was recently revisited. Building on previous studies of human kidney tissue, in the current issue, Liu et al. further characterize PECs using single-cell RNA sequencing data and confirm the crucial pathophysiological role of PECs in murine kidney biology as a reservoir for different types of progenitors.


Assuntos
Glomérulos Renais , Podócitos , Humanos , Camundongos , Animais , Podócitos/fisiologia , Células Epiteliais/fisiologia , Rim
11.
Curr Top Dev Biol ; 154: 285-315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100521

RESUMO

The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.


Assuntos
Polaridade Celular , Pulmão , Homeostase , Células Epiteliais/fisiologia
12.
Nat Cell Biol ; 25(5): 740-753, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081165

RESUMO

Epithelial cells that participated in wound repair elicit a more efficient response to future injuries, which is believed to be locally restricted. Here we show that cell adaptation resulting from a localized tissue damage has a wide spatial impact at a scale not previously appreciated. We demonstrate that a specific stem cell population, distant from the original injury, originates long-lasting wound memory progenitors residing in their own niche. Notably, these distal memory cells have not taken part in the first healing but become intrinsically pre-activated through priming. This cell state, maintained at the chromatin and transcriptional level, leads to an enhanced wound repair that is partially recapitulated through epigenetic perturbation. Importantly wound memory has long-term harmful consequences, exacerbating tumourigenesis. Overall, we show that sub-organ-scale adaptation to injury relies on spatially organized memory-dedicated progenitors, characterized by an actionable cell state that establishes an epigenetic field cancerization and predisposes to tumour onset.


Assuntos
Células Epiteliais , Cicatrização , Cicatrização/fisiologia , Células Epiteliais/fisiologia , Cromatina/genética , Células-Tronco/fisiologia
13.
Appl Environ Microbiol ; 89(4): e0174322, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36939340

RESUMO

Mastitis is a common and widespread infectious disease in dairy farms around the world, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis in dairy cows. S. aureus can activate inflammatory signaling pathways in bovine mammary epithelial cells. Exosomes produced by cells can directly transfer pathogen-related molecules from cell to cell, thus affecting the process of infection. Protein is the material basis of the immune defense function in the body; therefore, a comprehensive comparison of proteins in exosomes derived from S. aureus-infected (SA group) and normal (control group [C group]) bovine mammary epithelial MAC-T cells was performed using shotgun proteomics by a DIA approach. A total of 7,070 proteins were identified and quantified. Compared with the C group, there were 802 differentially expressed proteins (DEPs) identified in the SA group (absolute log2 fold change [|log2FC|] of ≥0.58; false discovery rate [FDR] of <0.05), among which 325 proteins were upregulated and 477 were downregulated. The upregulated proteins, including complement 3 (C3), integrin alpha-6 (ITGA6), apolipoprotein A1 (APOA1), annexin A2 (ANXA2), tripeptidyl peptidase II (TPP2), keratin 8 (KRT8), and recombinant desmoyokin (AHNAK), are involved mostly in host defense against pathogens, inflammation, and cell structure maintenance. KEGG enrichment analysis indicated that DEPs in S. aureus infection were involved in the complement and coagulation cascade, phagosome, extracellular matrix (ECM)-receptor interaction, and focal adhesion pathways. The results of this study provide novel information about proteins in the exosomes of MAC-T cells infected with S. aureus and could contribute to an understanding of the infectious mechanism of bovine mastitis. IMPORTANCE Mastitis is a widespread infectious disease in dairy farms, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis. Exosomes contain proteins, lipids, and nucleic acids, which are involved in many physiological and pathological functions. The expression of proteins in exosomes derived from bovine mammary epithelial cells infected by S. aureus is still barely understood. These results provide novel information about MAC-T-derived exosomal proteins, reveal insights into their functions, and lay a foundation for further studying the biological function of exosomes during the inflammatory response.


Assuntos
Doenças Transmissíveis , Exossomos , Mastite Bovina , Infecções Estafilocócicas , Bovinos , Animais , Feminino , Humanos , Staphylococcus aureus/fisiologia , Exossomos/metabolismo , Mastite Bovina/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Células Epiteliais/fisiologia , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/veterinária , Glândulas Mamárias Animais/microbiologia
14.
Theriogenology ; 199: 1-10, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731281

RESUMO

Endometrial receptivity is a critical process for the successful establishment of pregnancy in ruminants. However, the biological role of long non-coding RNAs (lncRNAs) in the development of endometrial receptivity is poorly understood. In this study, we performed RNA-seq analysis of immortalised goat endometrial epithelial cells (gEECs) treated with interferon-τ (IFNT). Transcriptome profiles showed that 8069 high-confidence putative lncRNAs, including 6498 intronic lncRNA transcripts, 1078 lincRNAs and 493 antisense lncRNAs were identified in gEECs with or without IFNT treatment. Functional clustering analysis was performed by using cis and trans lncRNAs prediction. GO and KEGG analyses revealed that differentially expressed lncRNAs may regulate tissue remodelling and immune responses. Subsequently, six of the 21 differentially expressed antisense lncRNAs were validated using qRT-PCR. Through functional screening and co-expression analysis of lncRNAs in gEECs, we identified that ISG15-AS was mainly expressed in the luminal and glandular epithelium on days 5 and 15 and was strongly upregulated on day 18 of pregnancy in vivo. Similarly, ISG15-AS was abundant in the nucleus and cytoplasm, and was significantly upregulated after treatment with IFNT in gEECs. In addition, ISG15 is an IFNT-responsive gene, that displayed an evident increase in vivo and in vitro. Moreover, sense ISG15 was significantly upregulated following ISG15-AS silencing. The key genes related to ISGylation and endometrial receptivity in gEECs dramatically increased after ISG15-AS inhibition. Collectively, our results indicate that a novel antisense lncRNA, ISG15-AS, may be important in regulating endometrial receptivity through ISGylation.


Assuntos
RNA Longo não Codificante , Animais , Feminino , Gravidez , Endométrio , Células Epiteliais/fisiologia , Epitélio , Cabras/genética , RNA Longo não Codificante/genética , Citocinas/genética , Ubiquitinas/genética
15.
Science ; 379(6634): 826-833, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821686

RESUMO

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Assuntos
Microbioma Gastrointestinal , Crescimento , Intestinos , Lactobacillaceae , Desnutrição , Proteína Adaptadora de Sinalização NOD2 , Animais , Camundongos , Parede Celular/química , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Transtornos do Crescimento/fisiopatologia , Transtornos do Crescimento/terapia , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Intestinos/microbiologia , Intestinos/fisiologia , Lactobacillaceae/fisiologia , Desnutrição/fisiopatologia , Desnutrição/terapia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Crescimento/efeitos dos fármacos , Crescimento/fisiologia , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Acetilmuramil-Alanil-Isoglutamina/uso terapêutico
16.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835041

RESUMO

Deficiencies in epithelial barrier integrity are involved in the pathogenesis of chronic rhinosinusitis (CRS). This study aimed to investigate the role of ephrinA1/ephA2 signaling on sinonasal epithelial permeability and rhinovirus-induced epithelial permeability. This role in the process of epithelial permeability was evaluated by stimulating ephA2 with ephrinA1 and inactivating ephA2 with ephA2 siRNA or inhibitor in cells exposed to rhinovirus infection. EphrinA1 treatment increased epithelial permeability, which was associated with decreased expression of ZO-1, ZO-2, and occludin. These effects of ephrinA1 were attenuated by blocking the action of ephA2 with ephA2 siRNA or inhibitor. Furthermore, rhinovirus infection upregulated the expression levels of ephrinA1 and ephA2, increasing epithelial permeability, which was suppressed in ephA2-deficient cells. These results suggest a novel role of ephrinA1/ephA2 signaling in epithelial barrier integrity in the sinonasal epithelium, suggesting their participation in rhinovirus-induced epithelial dysfunction.


Assuntos
Permeabilidade da Membrana Celular , Células Epiteliais , Receptor EphA1 , Receptor EphA2 , Humanos , Permeabilidade da Membrana Celular/genética , Permeabilidade da Membrana Celular/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Infecções por Picornaviridae/metabolismo , Receptor EphA2/metabolismo , Rhinovirus/patogenicidade , RNA de Cadeia Dupla , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia
17.
ACS Biomater Sci Eng ; 9(3): 1620-1628, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36763005

RESUMO

Cellular tight junctions play a key role in establishing a barrier between different compartments of the body by regulating the selective passage of different solutes across epithelial and endothelial tissues. Over the past decade, significant efforts have been conducted to develop more clinically relevant "organ-on-a-chip" models with integrated trans-epithelial electrical resistance (TEER) monitoring systems to help better understand the fundamental underpinnings of epithelial tissue physiology upon exposure to different substances. However, most of these platforms require the use of high-cost and time-consuming photolithography processes, which limits their scalability and practical implementation in clinical research. To address this need, we have developed a low-cost microfluidic platform with an integrated electrode array that allows continuous real-time monitoring of TEER and the risk of bubble formation in the microfluidic system by using scalable manufacturing technologies such as screen printing and laser processing. The integrated printed electrode array exhibited excellent stability (with less than ∼0.02 Ω change in resistance) even after long-term exposure to a complex culture medium. As a proof of concept, the fully integrated platform was tested with HMT3522 S1 epithelial cells to evaluate the tight barrier junction formation through TEER measurement and validated with standard immunostaining procedures for Zonula occludens-1 protein. This platform could be regarded as a stepping stone for the fabrication of disposable and low-cost organ and tissue-on-a-chip models with integrated sensors to facilitate studying the dynamic response of epithelial tissues to different substances in more physiologically relevant conditions.


Assuntos
Células Epiteliais , Dispositivos Lab-On-A-Chip , Células Epiteliais/fisiologia , Linhagem Celular , Eletrodos , Impedância Elétrica
18.
Allergol. immunopatol ; 51(1): 30-36, ene. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-214019

RESUMO

Psoriasis is a chronic multisystemic inflammatory disease with inflammatory cell infiltration, hyperproliferation of keratinocytes in skin lesions, and epidermal barrier dysfunction. Normal human epidermal keratinocytes (NHEKs) were stimulated with interleukin 17A (IL-17A). The expression levels of sirtuin-5 (SIRT5) were analyzed by RT-qPCR and western blot assay. The proliferation levels of NHEKs were assessed by EdU staining. The expression of ELOVL1 and ELOVL4 was analyzed by RT-Qpcr, and the expression levels of filaggrin, loricrin, and aquaporin-3 were analyzed by RT-qPCR and western blot. Extracellular signal-regulated kinase 1/2 (ERK1/2) activator t-butylhydroquinone was used to activate ERK1/2. Here, we show that SIRT5 overexpression reduces cell viability and cell proliferation, and improves barrier dysfunction in IL-17A-treated human epidermal keratinocytes, this effect of which is significantly blunted by the ERK1/2 activator. In epidermal keratinocytes, SIRT5 decreases cell proliferation and inflammation and improves barrier dysfunction via ERK/STAT3. This study reveals the role of SIRT5 in the pathogenesis of psoriasis, epidermal hyperplasia, keratinocyte-mediated inflammatory responses, and barrier dysfunction, the role of which is mediated by ERK/STAT3 (AU)


Assuntos
Humanos , Sirtuínas/metabolismo , Interleucina-17 , Psoríase/fisiopatologia , Células Epiteliais/fisiologia , Queratinócitos/fisiologia , Reação em Cadeia da Polimerase , Western Blotting
19.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580912

RESUMO

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Assuntos
COVID-19 , Sistema Respiratório , SARS-CoV-2 , Humanos , Cílios/fisiologia , Cílios/virologia , COVID-19/virologia , Sistema Respiratório/citologia , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Microvilosidades/fisiologia , Microvilosidades/virologia , Internalização do Vírus , Células Epiteliais/fisiologia , Células Epiteliais/virologia
20.
Am J Reprod Immunol ; 89(1): e13648, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334089

RESUMO

PROBLEM: Amniochorion senescence generates mechanistic signals to initiate parturition. Activation of p38 mitogen-activated kinase (MAPK) in fetal amnion cells is a key mediator of senescence as well as epithelial-mesenchymal transition (EMT) of amnion cells. However, the impact of p38 MAPK in chorion trophoblast cells (CTCs) is unclear. We tested if eliminating p38 will reduce oxidative stress (OS) induced cell fates like cellular senescence, EMT, and inflammation induced by these processes in CTCs. METHODS: p38MAPK in CTCs was silenced using CRISPR/Cas9. OS was evoked by cigarette smoke extract (CSE) exposure. EMT was evoked by transforming growth factor (TGF)-ß treatment. Cell cycle, senescence, EMT, and inflammation were analyzed. RESULTS: CSE-induced changes in the cell cycle were not seen in p38KO CTCs compared to WT cells. OS induced by CSE evoked senescence and senescence-associated secretory phenotype (SASP as indicated by IL-6 and IL-8 increase) in WT but not in p38MAPK KO CTCs. No changes were noted in HLA-G expression regardless of the status of p38MAPK. Neither CSE nor TGF-ß evoked EMT in either WT or p38 KO CTCs. CONCLUSION: Senescence and senescence-associated inflammation in human fetal CTCs are mediated by p38MAPK. Compared to amnion epithelial cells, CTCs are resistant to EMT. This refractoriness may help them to maintain the barrier functions at the choriodecidual interface.


Assuntos
Mitógenos , Trofoblastos , Feminino , Humanos , Mitógenos/metabolismo , Trofoblastos/metabolismo , Células Epiteliais/fisiologia , Senescência Celular , Âmnio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...